
 
 

 

 
The Computationally Infeasible: Phniks Algorithm 

(Cryptography) 
 

Nikhil Phalak1 and Dr. Vijaya Musande2 
1CSE-JNEC, Aurangabad, India 

Email: phniks@gmail.com 
2HOD, CSE-JNEC, Aurangabad, India 

Email: vijayamusande@gmail.com 
 

  
Abstract— In this paper I have given an algorithm (my original work) named as the 
‘PHNIKS Algorithm’ which can be used to encrypt-decrypt data and breaking the cipher-
text is computationally infeasible which makes it much strong. I have given proofs of the 
above claims in this paper and computed the required results. I have also given the brute-
force attack and computed the time required to break the cipher-text assuming the highest 
possible speed today that is 33.86 PFLOPS of TIANHE-2 supercomputer (source of 
information mentioned in the references).  
 
Index Terms— PHNIKS Algorithm, bijective functions, cardinality, PFLOPS, functions, 
combinatorics, time complexity.  

I. INTRODUCTION 

The following paper is the outcome of my original work in Cryptography, more precisely, an algorithm 
named ‘PHNIKS’ algorithm which can be used for encryption-decryption of the message. I was inspired to 
work on this particular subject while studying the basics of Cryptography. I have jotted down my ideas and 
played with them to come out with the ‘phniks’ algorithm. I have analyzed the algorithm and explained every 
part of it in this report. The analysis part demonstrate its importance. I have used basic concepts from 
Algorithms and Mathematics, more precisely Combinatorics (basic counting). Mathematical background 
required is basic knowledge of functions and time complexity. This paper contains the stated algorithm and 
theory to retrieve permutations for encryption. 

II. RELATED WORK OR LITERATURE STUDIES 

This paper is my original work. I have used whatever knowledge I have gained while studying the regular 
courses in the college (like Cryptography and Combinatorics) or school courses (like basics of functions). 

III. MOTIVATION 

I am passionate about problem solving and playing with nuances of every idea that clicks my mind. This 
attitude  of  mine always  keeps me  self-motivated  to work  and  innovate  over  any  subject  I  study.  I was  
 
Grenze ID: 01.GIJCTE.2.2.25  
© Grenze Scientific Society, 2016   
 
 

 

Grenze International Journal of Computer Theory and Engineering , June 2016 



 
8 

 

working with the problem of getting all the permutations of {1,2,…,n} and try to index them to identify and 
retrieve any permutation as and when required. I worked over this idea of retrieving a permutation given its 
index for any n and succeeded. This is my innovation. Then I observed the bijection between set of 
permutations of {1,2,…,n} and all bijective functions from {1,2,…,n} to {1,2,…,n}. I have used this into the 
‘phniks’ algorithm. To summarize, working over the above mentioned problem motivated me to design and 
play with this algorithm. 

IV. PROBLEM DOMAIN 

 MATHEMATICS  (required : basic knowledge of functions and basic combinatorics). 
 ALGORITHMS  (required : computation of performance analysis like time complexity). 
 CRYPTOGRAPHY (basics). 

V. PROBLEM DEFINITION, STATEMENT AND INNOVATIVE CONTENT  

 PHNIKS ALGORITHM: 
 Define a set V of all bijective functions on {1, 2, 3, … , r}. 
 Choose a subset V’ of V. 

 Note: 
o V’ is our key. 
o Choose the cardinality of V’ to the number of partitions of the message chosen or any 

random value between 1 to r.  
 Encrypt each partition of the message with some sequence of elements of V’ and send the encrypted 

message. 
 At the receiver end identify the elements of V’ and apply inverses of the corresponding functions.  
 Retrieving a permutation of {1,2,…,n} given its index for any n. 

Note: index may be any number between 1 and n! (n factorial), (including both 1, n!). 
 Generating subset V’. 

VI. PROBLEM FORMULATION AND REPRESENTATION 

 Let: 
 P(r) be the set of all permutations of the elements {1, 2, 3, … , r}.  
 S(P(r)) be a specific permutation of all the elements of P(r).  
 Pr(k) be the kth element in S(P(r)). 
 Pr(k)||r be P(r-1)(k’) 
 X((Pr(k)),j) be the position of j in Pr(k). 
 Y(Pr(k)),j) be the element at position j in Pr(k). 
 0 be the index of position j in Pr(k) if  X((Pr(k)),j) is not known so far. 

 Note : initially all positions are indexed 0 (since we don’t know the permutation). 
 1 be the index of position j in Pr(k)  if  X(Pr(k)),j) is known. 
 F(k,r) be the position of index 0 at which r occurs in  Pr(k). 
 G(k,r) be k’ in P(r-1)(k’). 
 Formulae: 

1)  F(k,q) = k (modulo q). 
 
2) 2.1)   G(k,q) = [k/q]+1 … F(k,q) is nonzero.  
  Note : [ ] used above is the greatest integer function. 
  
 2.2)   G(k,q) = (k/q) … F(k,q) is zero. 
 Generating keys: 

1) Choose any two different numbers a, b such that 1 <= a, b <= n. 
2) key(i) = Y((Pn(key(i-1))),key(i-2)). 

… recursive formula and Y( … , … ) as defined above. 
3) key(0) = Y((Pn(a)),b). 



 
9 

 

4) key(1)  = Y((Pn(b)),a). 
Such recursively computed keys makes them dependent on the previous ones. 

VII. SOLUTION METHODOLOGIES AND PROBLEM SOLVING 

 Pseudocode for retrieving permutation of {1,2,…,n} with index k: 
1) Take 2 values : 
 n : the cardinality of the set {1,2,…,n}. 
 k : the index value of the permutation such that 1 <= k <= n! . 

2) Declare two arrays of length n ; 
 Array ‘ar’ for storing the permutation with index k. 
 Array ‘car’ for storing the index of positions of positions (either 0 or 1). 

3) Consider integers count=0, x and y. 
4) Loop to get permutation with index k: 

for(int i=0 ; i<n ; i++) 
 { 
  if( k % (n-i) == 0)           //% is modulus operation 
 
  { 
   x=(n-i); 
  } 
 
  else 
 
  { 
   x=( k % (n-i) ); 
  } 
 
  if( k % (n-i) == 0 ) 
 
  { 
   y =  ( k / (n-i) ) ; 
  }  
 
  else 
 
  { 
   y = ( ( k / (n-i) ) + 1 ); 
//assume ( k/(n-i) ) returns an integer value equivalent to greatest integer function 
  } 
   
  for(int l=0; l<(n); l++) 
 
  { 
   
   if(car[l]==0) 
 
   { 
    count++; 
 
    if(count==x) 
 
    { 
     ar[l]=(n-i); 
 



 
10 

 

     car[l]=1; 
    } 
 
    if(count>x) 
    break; 
   } 
  
  } 
  k=y; 
 
  count=(0);   
 } 
 

5) Print array ar. 
 Formal proof for bijection between: 

 bijective functions from {1,2,..,n} to {1,2,..,n} 
 permutations of the set {1,2,…,n} 

 
 let (t1,t2,…,tn) be some permutation of {1,2,…,n}. 

 
Consider the mapping  
 
 i -> ti   … for all i running from 1 to n; AND ;for different i and j  
       values ti and tj are different. 
 
The above mapping is one-one and onto. 
 
Thus for every permutation (t1,t2,…,tn)  of {1,2,..,n} , there exists unique 
bijective mapping from {1,2,..,n} to {1,2,..,n}. 

…#1 
 

 Consider the bijective mapping from {1,2,..,n} to {1,2,..,n}: 
 
 i -> ti   … for all i running from 1 to n.  
 
So for different i and j values ti and tj are different and sets {t1,t2,…,tn} and 
{1,2,…,n} are equal. 
 
Thus for every bijective mapping from {1,2,..,n} to {1,2,..,n} there exists a unique 
permutation (t1,t2,…,tn) of {1,2,..,n}. 

…#2 
 #1 and #2 implies the bijection between : 

 
 

 bijective functions from {1,2,..,n} to {1,2,..,n} 
 

 permutations of the set {1,2,…,n}. 
 Method to encrypt data : 

Let the message be partitioned into p partitions and let us choose the cardinality of V’ to be p. 
Note: if cardinality is chosen as some other number k then: 

o if k > p : Generate keys only till keyp and encrypt. 
o if k < p : Generate all keys and repeat the sequence of keys for 

encryption. 
Let messagepi be the message in the ith  partition. 
Encode messagepi  using ASCII values of characters in some radix. 



 
11 

 

Let intpi be the encoded value of messagepi . 
Encryption of intpi  is Y((Pn(keyi)),intpi) 

 Method to decrypt data : 
At the receiver end retrieve Y((Pn(keyi)),intpi) get back intpi as follows:- 
intpi = X((Pn(keyi)),(Y((Pn(keyi)),intpi)))  

VIII. RESULTS ANALYSIS, COMPARISON AND JUSTIFICATION 

Time to compute subset V’ while encryption 
 Time required to break the cipher text at 33.86 PFLOPS, the speed of world’s fastest supercomputer till 

date, TIANHE-2.   

TABLE I. TIME AND SPEED ANALYSIS 

(Source from which the speed information about TIANHE-2 is taken: http://en.wikipedia.org/wiki/Tianhe-
2 ) 

TABLE II. DECRYPTION WITH TIANHE-2 

VALUE 
OF n 

SPEED (in 
GFLOPS) 

TIME TO RETRIEVE PERMUTATION 
WITH INDEX k (in seconds) 

CARDINALITY OF 
SET V’ 

TIME TO COMPUTE 
ELEMENTS OF V’ (in 

seconds) 

100 10 0.000001 10 0.00001 

1000 10 0.0001 10 0.001 

10000 10 0.01 10 0.1 

100000 10 1 10 10 

1000000 10 100 10 1000 

100 100 0.0000001 25 0.0000025 

1000 100 0.00001 25 0.00025 

10000 100 0.001 25 0.025 

100000 100 0.1 25 2.5 

1000000 100 10 25 250 

100 1000 0.00000001 50 0.0000005 

1000 1000 0.000001 50 0.00005 

10000 1000 0.0001 50 0.005 

100000 1000 0.01 50 0.5 

1000000 1000 1 50 50 

VALUE OF 
n 

NUMBER OF PARTITIONS p OF THE 
MESSAGE 

WORST-CASE TIME REQUIRED TO BREAK THE CIPHER-
TEXT (in years) 

100 15 0.936 million 

100 16 93.6 millions 

100 17 9.36 billions 

100 18 936 billions 
100 19 93600 billions 
100 20 9.36 quadrillion 

1000 15 0.936 million quadrillion 
1000 16 936 million quadrillion 

1000 17 936 billion quadrillion 



 
12 

 

Column 3 proves the computational infeasibility to break the cipher text for small values of n (like n=100) 
even with the highest achievable speed so far that is 33.86 PFLOPS. 
Time complexity 

TABLE III. TIME COMPLEXITY 

 Brute-force attack: 
It is evident that every messagepi is mapped bijectively to some number from 1 to n (including both), so there 
are n attempts to decipher messagepi. 
So there are (np) attempts (worst case) to be made to decipher the whole message, where p is the number of 
partitions of the message.   

IX. CONCLUSION 

The strength of the ‘PHNIKS’ algorithm is demonstrated by the tabular data, computation time complexity 
and justification of the computational infeasibility (brute-force attack) to break the cipher-text with the 
requirement of (np) computations.  

FUTURE WORK 

Finding clever attacks for the ‘PHNIKS’ algorithm. 

REFERENCES 

[1] Bartle, r.g., sherbert, d.r., “introduction to real analysis”, third edition, john wiley and sons, 2007. 
[2] Tucker, alan, “applied combinatorics”, fourth edition, john wiley and sons, 2004. 
[3] Tanenbaum, a. S., wetherall, d. J., “computer networks”, fifth edition, pearson, 2012. 
[4] Reference to Tianhe-2 Supercomputer, http://en.wikipedia.org/wiki/Tianhe-2 . 
[5] Consolidated Content review comments  Paper should strictly formatted according to the single column standard 

format;Include more relevant references to substantiate the related works 
 

 

 

 

 
 

Method Time complexity 

THE PHNIKS ALGORITHM O(n2) 

RETRIEVING PERMUTATION WITH INDEX k O(n2) 

GENERATING SUBSET V’ O(n2) 

ENCRYPTION O(n2) 

DECRYPTION O(n2) 


